UNIVERSITY OF JAFFNA BACHELOR OF PHARMACY

FIRST YEAR SECOND SEMESTER EXAMINIATION - FEBRUARY 2014 PHACH 1206 PHARMACEUTICAL CHEMISTRY

Date: 07.03.2014
ANSWER ALL SIX QUESTIONS
Answer "Part A" and "Part B" in separate answer books.

Time: 3 Hours

Part A

	Part A				
1	1.1	Explain followings:			
		1.1.1 Law of mass conservation	(10 Marks)		
		1.1.2 Law of definite compositions	(10 Marks)		
	1 2	1.1.3 Law of multiple proportions	(10 Marks)		
		Postulate Dalton's atomic theory.	(40 Marks)		
	1.3	How the Dalton's theory explains mass laws	(30 Marks)		
2	2.1	Use a diagram to illustrate the experiment that lead to the discovery of electron.	(40 Marks)		
	2.2	Describe Rutherford's experiment.	(40 Marks)		
	2.3	Calculate the wavelength of the yellow sodium emission, which has a frequency of $5.09 \times 10^{14}/\text{s}$?			
		Note: The electromagnetic radiation moves at the speed of $3x10^8$ m/s	(20 Marks)		
3	3.1	Describe the consequences of impurities in pharmaceutical products.	(20 Marks)		
	3.2	Describe how impurities can be introduced to pharmaceutical products during manufacturing.	(50 Marks)		
		Briefly describe the limit test for Cl and SO ₄ ² .	(30 Marks)		
Part B					
4.1 Give the IUPAC name of following compounds and ions					
		$4.3.1 \text{ CoCl(NO}_2)(\text{NH}_3)_4$	(05 Marks)		
		$4.3.2 \text{ Pt(NH}_3) \text{BrCl(CH}_3 \text{NH}_2)$	(05 Marks)		
		$4.3.3 [Cu(NH_3)_2(en)]Br_2$	(05 Marks)		
		$4.3.4 \text{ K}_2[\text{Cu}(\text{CN})_4]$	(05 Marks)		
	4.2	Describe the following with example.			
		4.2.1 Monodentate ligand	(20 Marks)		
		4.2.4 Hexadentate ligand	(20 Marks)		
	4.3	Diagramatically illustrate the isomerism of	(^ ^ ^ ^ ^ ^ ^ ^ ^ ^		
		4.4.1 $[Co(NH_3)_5(NO_2)]Cl_2$	(20 Marks)		
		$4.4.2 [Cr(OH_2)_6]Cl_3$	(20 Marks)		

5	5.1	5.1.1 What is molecular orbital theory?	(15 Marks)
	5.2	For N_2 , O_2^+ , O_2^- molecules	
		5.2.1 Write down the molecular orbital electronic configuration	(15 Marks)
		5.2.2 Indicate the highest occupied molecular (HOMO) orbital	
		conformation.	(15 Marks)
		5.2.3 Calculate the bond order of the above molecules.	(15 Marks)
	5.3	Sketch the molecular energy level of	
		5.3.1. CO.	(20 Marks)
		5.3.2. NO	(20 Marks)
6	6.1	Briefly describe	
		6.1.1 valence bond (VB) theory.	(10 Marks)
		6.1.2 valence shell electron pair repulsion (VSEPR) theory.	(10 Marks)
	6.2	Describe the molecular geometry of NH ₃ by using VB and VESPR theory.	(40 Marks)
	6.3	Use the VESPER theory to illustrate the following molecules /ions;	
		H_2O, CO_3^{2-}	(40 Marks)

· - - - · · · · - - ·