UNIVERSITY OF JAFFNA, SRI LANKA FACULTY OF ALLIED HEALTH SCIENCES FIRST YEAR SECOND SEMESTER EXAMINATION IN BPharmHons- 2020 PHACH 1273 PHARMACEUTICAL CHEMISTRY I Date: 0 6 SEP 2022 Time: 3 Hours ## ANSWER ALL THE SIX QUESTIONS | 1.1 | Define "Titrimetric analysis". | (10 Marks) | |-----|--|--| | 1.2 | Standardization of a given KMnO ₄ solution was done with | | | | standard sodium oxalate (0.05 M) solution. 10.0 mL of $Na_2C_2O_4$ | | | | solution was pipetted into a titration flask and 5ml of dil $H_2\mathrm{SO}_4$ | | | | was added to the titration flask. The resulting solution was titrated | | | | against KMnO ₄ solution, and the end point was 9.5 mL. | | | | 1.2.1 Write down the possible observation during the analysis? | (10 Marks) | | | 1.2.2 Find out the moles of sodium oxalate present in the given | | | | sample. | (20 Marks) | | | 1.2.3 Calculate the number of moles of potassium permanganate | | | | required in the analysis? | (30 Marks) | | | 1.2.4 Determine the concentration of potassium permanganate. | (30 Marks) | | | | | | 2.1 | Give the IUPAC names of the following compounds. | | | | 2.1.1 [Fe(CN) ₆] ³⁻ | (10 Marks) | | | 2.1.2 $[Co(en)_3]^{3+}$ | (10 Marks) | | | 2.1.3 Na ₂ [Ni(Cl) ₄] | (10 Marks) | | | 2.1.4 Ni (CO) ₄ | (10 Marks) | | 2.2 | Diagrammatically illustrate the possible isomerisms of | | | | 2.2.1 $[Pt(NH_3)(H_2O)Cl_2]$ | (25 Marks) | | | 2.2.2 $[Co(NH_3)_5(NO_2)]^{2+}$ | (35 Marks) | | | 2.1 | 1.2 Standardization of a given KMnO₄ solution was done with standard sodium oxalate (0.05 M) solution. 10.0 mL of Na₂C₂O₄ solution was pipetted into a titration flask and 5ml of dil H₂SO₄ was added to the titration flask. The resulting solution was titrated against KMnO₄ solution, and the end point was 9.5 mL. 1.2.1 Write down the possible observation during the analysis? 1.2.2 Find out the moles of sodium oxalate present in the given sample. 1.2.3 Calculate the number of moles of potassium permanganate required in the analysis? 1.2.4 Determine the concentration of potassium permanganate. 2.1 Give the IUPAC names of the following compounds. 2.1.1 [Fe(CN)₆]³⁻ 2.1.2 [Co(en)₃]³⁺ 2.1.3 Na₂ [Ni(Cl)₄] 2.1.4 Ni (CO)₄ 2.2 Diagrammatically illustrate the possible isomerisms of 2.2.1 [Pt(NH₃)(H₂O)Cl₂] | | 3 | 3.1 | Predict the geometry of the following compounds based on the | | T | |----|-----|---|------------|---| | | | Valence-Shell Electron Pair Repulsion (VSEPR) theory. | | | | | | 3.1.1 BCl ₃ | (25 Marks) | | | | | 3.1.2 H ₂ O | (25 Marks) | | | | 3.2 | Explain the molecular geometry of BeH2 and BF3 based on the | | | | | | Valence bond theory. | (50 marks) | | | | | | | | | | | | | | | 4. | 4.1 | Regarding O_2 and F_2 , | | | | | | 4.1.1 Draw the molecular orbital energy level diagrams. | (40 Marks) | | | | | 4.1.2 Write down the molecular orbital electronic configuration of | | | | | | the above molecules. | (20 Marks) | | | | | 4.1.3 What kind of magnetic properties do they have? | (20 Marks) | | | | | 4.1.4 Find the bond order of the above molecules and explain their | | | | | | stability. | (20 Marks) | | | | | | | | | | | | | | | 5. | 5.1 | What is "Limit test"? | (10 Marks) | | | | 5.2 | Briefly describe the principle and a standard protocol of the limit | | | | | | test for chloride. | (70 Marks) | | | | 5.3 | List the application of Limit test. | (20 Marks) | | | | | | | | | | | | | | | 6. | 6.1 | Write short notes on the followings: | | | | | | 6.1.1 Photoelectric effect | (50 Marks) | | | | | 6.1.2 Compton effect | (50 Marks) | | | | | | | |