

UNIVERSITY OF JAFFNA, SRI LANKA FACULTY OF ALLIED HEALTH SCIENCES

FISTER YEAR FIRST SEMESTER EXAMINATION IN B.Pharm (Hons) - 2019 PHAPM 1181 PHARMACEUTICAL MATHEMATICS

Date: 27.04.2021 Time: One hour

Answer All Questions

- 1. (a) i. If α, β are the roots of the quadratic equation $5x^2 6x + 3 = 0$, form a quadratic equation whose roots are
 - α^2, β^2 ;
 - $\alpha^3\beta$, $\alpha\beta^3$.
 - ii. For what values of K, the roots of the quadratic equation $Kx^2 + 4x + (K-3) = 0$ are equal.
 - (b) Use the logarithm laws to write each of the following expression as a single logarithm:

i.
$$\ln(a+1) - \frac{1}{3}\ln(b-1) - 3[\ln(c+2) - \ln(d-2)];$$

ii.
$$\frac{1}{2}\log_2 u + \frac{1}{3}\log_2 y - \frac{1}{2}(\log_2 a + \log_2 b);$$

- iii. $1 + 2\log_a b \log_a ab$.
- (c) Prove that

i.
$$\cos^4 \theta - \sin^4 \theta = 1 - 2\sin^2 \theta$$
;

ii.
$$\frac{\sec x - \cos x}{1 + \cos x} = \sec x - 1.$$

(d) If θ_1 and θ_2 are acute angles such that $\sin \theta_1 = \frac{3}{5}$ and $\sin \theta_2 = \frac{5}{13}$, find the numerical value of $\sin(\theta_1 + \theta_2)$ and $\cos(\theta_1 + \theta_2)$. In what quadrant does the angle $\theta_1 + \theta_2$ lie?

Continued

2. (a) Differentiate the following with respect to
$$x$$
 and simplify the answer.

i.
$$(3x^3 - 2x^2 + 4)(2x - 1)$$
;

ii.
$$\frac{x^3 + 5x^2 - 2x + 4}{x^2 + 9}$$
;

iii.
$$\sin(x^2 + 3)$$
;

iv.
$$e^{\cos 2x}$$

(b) Find the value of
$$\frac{dy}{dx}$$
 at the point specified:

i.
$$x^2 + y^2 = 25$$
 at $(3, -4)$;

ii.
$$x^2 + 4xy - 2y^2 - 8 = 0$$
 at $(0, 2)$;

iii.
$$x \sin y + y^2 = 1 + \frac{\pi^2}{4}$$
 at $\left(1, \frac{\pi}{2}\right)$.

(c) Find the following integrals:

$$i. \int \left(3\sqrt{x} - \frac{2}{x^3} + \frac{1}{x}\right) dx;$$

ii.
$$\int \sqrt{x}(x^2-1) dx;$$

hoseg!]

iii.
$$\int x^5 e^{1-x^6} dx$$
, you may use the substitution $t = 1 - x^6$;

iv.
$$\int \frac{2x \ln(x^2+1)}{x^2+1} dx$$
, you may use the substitution $t=x^2+1$.

End of Exam

