

UNIVERSITY OF JAFFNA, SRI LANKA BACHELOR OF SCIENCE IN MEDICAL LABORATORY SCIENCES SECOND YEAR FIRST SEMESTER EXAMINATION – OCTOBER 2019

MLSMT 2144 MEDICAL LABORATORY TECHNOLOGY I

Date: 05.11.2019 Time: 3 Hours

ANSWER ALL EIGHT QUESTIONS.
ANSWER PARTS A, B AND C IN SEPARATE ANSWER BOOKS.

PART A

	IANIA	
1.		
1.1	What is meant by radioactivity?	(10 Marks)
1.2	Give two differences between beta minus and gamma radiation.	(15 Marks)
1.3	Give the importance of biological half-life time of a radionuclide in	
	nuclear medicine.	(15 Marks)
1.4	Give the relationship between physical decay constant and biological decay cons	stant
	of a radionuclide and obtain the relationship between their half-life's. Estimate	211111111
	the effective half-life time of I-131. (The half-life timeof I-131 is 8 days and	
	biological half-life time of I-131 in thyroid gland is 24 days)	(30 Marks)
1.5	A 100 mCi of small radio I-131 sample is administered to a patient to treat the	
	thyroid cancer. Estimate the activity of I-131 sample in a patient after 4 days of	
	administration.	(20 Marks)
1.6	Explain briefly why I-131 capsule is kept in the lead container.	(10 Marks)
2.		
2.1	Why treatment simulation used in radiation treatment planning?	(15 Marks)
2.2	Briefly explain why poor quality port films are obtained in treatment machines.	(30 Marks)
2.3		
	isodose lines when they are used during the radiation treatment.	(30 Marks)
2.4	Give the advantages of multiple coplanar beams used in teletheraphy machines.	(25 Marks)
3.		
3.1	Briefly explain the harmful effects of ionizing radiation on human tissue.	(45 Marks)

3.2	Define radiation absorbed dose. A 50.0kg female patient is absorbs 1.00 J of	
	gamma radiation during her treatment. Estimate the absorbed dose in this pati	ient. (25 Marks)
3.3	Distinguish between deterministic and stochastic effect in radiation protection	n. (30 Marks)
4.		
	riefly describe the following events in X-ray production.	
	1.1 Energetic electron interacts with outer shell electron of the target atom.	(15 Marks)
	1.2 Energetic electron approaches the nucleus of the target atom.	(15 Marks)
4.	1.3 Energetic electron interacts with inner shell electron of the target atom.	(15 Marks)
4.2 B	iefly describe the line focusing principle in X-ray production.	(25 Marks)
4.3Br	iefly explain why intensities of X-ray beam vary across the anode during	
X-	ray production.	(30 Marks)
5.		
5.1 Br	iefly describe the working principle of medical cyclotron with a suitable labelle	d
	igram.	(30 Marks)
5.2 Gi	ve the functions of each component in gamma camera	,
5.2	.1 Collimator	(10 Marks)
5.2	.2 NaI crystal	(10 Marks)
5.2	.3 Photo Multiplier Tube	(10 Marks)
5.3 Br	efly describe the radioimmunoassay technique and its advantages.	(40 Marks)
		(10 Marks)
	PART B	
6.		
6.1 Wh	at are the four important characteristics that differentiate laser beam from	
	inary light?	(10Marks)
6.2 Bri	efly explain how a light beam interacts with an active medium when it transvers	
	ough it?	(10 Marks)
6.3 Wh	at is meant by population inversion?	(20 Marks)
	v population inversion is achieved within an active?	(10Marks)
	cribe the photodynamic therapy (PDT) used for treating tumour?	(20 Marks)
	lain how different amount of heat energy of a laser used in medical applications	(20 Marks)
	co a serious de minodicas applications	
		(10 Marks)

7.

7.1Give main types of imaging modalities? (25 Marks)

7.2 Briefly describe the main functions of the cathode, anode and housing of an X-ray tube.

(15Marks)

7.3 Why tungsten is a good choice for both the filament and the target material? (20 Marks)

7.4How intensity of the X-ray output produced within an X-ray tube can be adjusted? (20 Marks)

7.5What does the kV setting on a console control? (20 Marks)

PART C

8.

8.1 The following circuit is powered by a battery with an emf of 1 V and negligible internal resistance. Estimate the current through the $10~\Omega$ and $20~\Omega$ resistances. (20 Marks)

8.2. The following circuit consists of a Silicon transistor with a β value of 50. Estimate the V_{CE} and the collector current (I_C) in the circuit given in the following figure (You may assume that the transistor is active and Vcc = 10 V, at active region, $I_C = \beta I_B$) (30 Marks)

8.3Estimate V_{out} in the following circuits if V_{in} is given as 20 mV.

(30 Marks)

8.4 Derive an expression for V_{out} of the following circuit in terms of $V_{\text{in}},\,C$ and R.

(20 Marks)

Hint: Current (I) through a capacitor can be written as $I = c \frac{dV}{dt}$, where c is the capacitance, V is the voltage difference across the resistance and t is time.