LIB

## UNIVERSITY OF JAFFNA, SRILANKA BACHELOR OF PHARMACY FIRST YEAR SECOND SEMESTER EXAMINATION – MARCH 2019 PHARMACEUTICAL CHEMISTRY I - PHACH 1273

| DATE: 18.03.2019                                                                                           |               |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|
| ANSWER ALL QUESTIONS.                                                                                      |               |  |  |  |  |
| 1.                                                                                                         |               |  |  |  |  |
| 1.1. Briefly explain the followings:                                                                       |               |  |  |  |  |
| 1.1.1. Heisenberg uncertainty principle.                                                                   | (20 Marks)    |  |  |  |  |
| 1.1.2. Rutherford's nuclear scattering experiment.                                                         | (20 Marks)    |  |  |  |  |
| 1.2. List the properties of positive rays.                                                                 | (10 Marks)    |  |  |  |  |
| 1.3.                                                                                                       |               |  |  |  |  |
| 1.3.1. Briefly explain the photoelectric effect                                                            | (20 Marks)    |  |  |  |  |
| 1.3.2. A photoelectric metal surface with a threshold frequency of                                         |               |  |  |  |  |
| 0.75X10 <sup>15</sup> Hz was illuminated by a 250nm photon and emits                                       |               |  |  |  |  |
| electron. (h= $6.63 \times 10^{-34} \text{Js}$ , mass of the electron = $9.11 \times 10^{-31} \text{kg}$ , |               |  |  |  |  |
| speed of light $=3X10^8 \text{ms}^{-1}$ ).                                                                 |               |  |  |  |  |
| Calculate the followings:                                                                                  |               |  |  |  |  |
| 1.3.2.1. Work function of that metal.                                                                      | (15 Marks)    |  |  |  |  |
| 1.3.2.2. Maximum kinetic energy of the emitted photoelectron                                               | n. (15 Marks) |  |  |  |  |
|                                                                                                            |               |  |  |  |  |
|                                                                                                            |               |  |  |  |  |
| 2.                                                                                                         |               |  |  |  |  |
| 2.1. Write an account on dual nature of matter. (15 Ma                                                     |               |  |  |  |  |
| 2.2. Briefly explain the basis for Dalton's atomic theory and the main parts of his theory. (20 Marks)     |               |  |  |  |  |
| 2.3. Define the Valence shell electron pair repulsion (VSEPR) model.                                       | (10 Marks)    |  |  |  |  |
| 2.4. Draw the Lewis structure for the following molecules.                                                 |               |  |  |  |  |
| 2.4.1. Na <sub>2</sub> S                                                                                   | (05 marks)    |  |  |  |  |
| 2.4.2. $SO_2$                                                                                              | (10 marks)    |  |  |  |  |
| 2.4.3. PCl <sub>3</sub>                                                                                    | (10 marks)    |  |  |  |  |
| 2.5. Assign AXmEn designation, identify the LP-LP, LP-BP, BP-BP interactions, explain                      |               |  |  |  |  |
| the deviation in bond angle from ideal bond angle and describe the molecular                               |               |  |  |  |  |
| geometry based on VSEPR model for the following chemical species                                           | es.           |  |  |  |  |
| 2.5.1. ICl <sub>4</sub>                                                                                    | (15 Marks)    |  |  |  |  |
| 2.5.2. BrF <sub>5</sub>                                                                                    | (15 Marks)    |  |  |  |  |
|                                                                                                            | ( )           |  |  |  |  |

|    |                                                                                                                                                      | ,                 |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|
| 3. | 3.1. Define the terms 'Atomic orbital' and 'Molecular orbital'                                                                                       | (10.16.1.)        |  |  |
|    |                                                                                                                                                      | (10 Marks)        |  |  |
|    | 3.2. For $N_2^+$ , $N_2$ , $N_2$ , $F_2$ and $F_2^{2-}$                                                                                              | (25 Mayles)       |  |  |
|    | <ul><li>3.2.1. Draw the molecular orbital energy level diagrams.</li><li>3.2.2. Write down the molecular orbital electronic configuration.</li></ul> | (25 Marks)        |  |  |
|    | molecules.                                                                                                                                           | (10 Marks)        |  |  |
|    | 3.2.3. Calculate the bond order of the above molecules.                                                                                              | (10 Marks)        |  |  |
|    | 3.2.4. Explain the stability of the above species.                                                                                                   | (10 Marks)        |  |  |
|    | 3.2.5. Classify them according to their magnetic property.                                                                                           | (10 Marks)        |  |  |
|    | 3.2.6. Give the reason for the difference in the order of formed                                                                                     |                   |  |  |
|    | orbitals of N <sub>2</sub> and F <sub>2</sub>                                                                                                        | (10 Marks)        |  |  |
|    | 3.3. Sketch the energy level diagram for formed molecular orbitals                                                                                   | of hetero-nuclear |  |  |
|    | diatomic molecule NO. (15                                                                                                                            | (15 marks)        |  |  |
|    |                                                                                                                                                      |                   |  |  |
| 4. |                                                                                                                                                      |                   |  |  |
| 4. | 4.1.                                                                                                                                                 |                   |  |  |
|    | 4.1.1. Briefly explain the possible hybridizations of carbon in                                                                                      | molecules by      |  |  |
|    | sketch the energy level diagram (Depict the ground state, excited state,                                                                             |                   |  |  |
|    | hybridization state).                                                                                                                                | (30 marks)        |  |  |
|    | 4.1.2. Compare the stability of hybridized orbitals of carbon ba                                                                                     | ,                 |  |  |
|    |                                                                                                                                                      | (10 marks)        |  |  |
|    | 4.1.3. Draw the structure of the hybridized orbital and give two examples                                                                            |                   |  |  |
|    | for eachtype of hybridization                                                                                                                        | (15 marks)        |  |  |
|    | 40 D C 4 6 H                                                                                                                                         |                   |  |  |
|    | 4.2. Define the following terms                                                                                                                      | (1036.1)          |  |  |
|    | 4.2.1. Equivalence point                                                                                                                             | (10 Marks)        |  |  |
|    | <ul><li>4.2.2. Gravimetric Analysis</li><li>4.3. Briefly describe the types of titrimetric analysis.</li></ul>                                       | (10 Marks)        |  |  |
|    | 4.5. Biletry describe the types of thinneline analysis.                                                                                              | (25 Marks)        |  |  |
|    |                                                                                                                                                      |                   |  |  |
| 5. | Define the followings:                                                                                                                               |                   |  |  |
|    | 5.1.1. Co-ordination number                                                                                                                          | (10 Marks)        |  |  |
|    | 5.1.2. Chelation                                                                                                                                     | (10Marks)         |  |  |
|    | 5.1.3. Stereo isomerism                                                                                                                              | (10Marks)         |  |  |
|    | 5.2. Briefly describe any five types of structural isomerism related to co-ordination                                                                |                   |  |  |
|    | compounds. (30 Marks)                                                                                                                                |                   |  |  |
|    | 5.3. Give the IUPAC name of the following compounds or ions.                                                                                         | 40                |  |  |
|    | 5.3.1. [Cr(H <sub>2</sub> O) <sub>5</sub> ONO][FeBr <sub>4</sub> ] <sub>2</sub>                                                                      | (10 Marks)        |  |  |
|    | 5.3.2. [Pb(NH <sub>3</sub> ) <sub>4</sub> ]F <sub>2</sub> 5.4. Find out the possible isomerism/s present in the followings                           | (10 Marks)        |  |  |
|    | 5.4. Find out the possible isomerism/s present in the followings. 5.4.1. [Cr(H <sub>2</sub> O) <sub>5</sub> SCN] <sup>2+</sup>                       | (05 Montes)       |  |  |
|    |                                                                                                                                                      | (05 Marks)        |  |  |
|    | 5.4.2. $[Pt(NH_3)_4(OH)_2]SO_4$                                                                                                                      | (05 Marks)        |  |  |

| 5.5. | List th | the types of ligands and give one example for each                             | (10 Marks) |
|------|---------|--------------------------------------------------------------------------------|------------|
|      |         |                                                                                |            |
| 6.   |         |                                                                                |            |
| 6.1. | Defin   | (0536.1.)                                                                      |            |
|      | 6.1.1.  | Assay.                                                                         | (05 Marks) |
|      | 6.1.2.  | Identification test.                                                           | (05 Marks) |
|      |         | Test for purity.                                                               | (05 Marks) |
|      |         | y explain limit test for chloride ions                                         |            |
| 0.2. | 6.2.1   | the principle.                                                                 | (10 Marks) |
|      |         | standard method.                                                               | (15 Marks) |
|      | 6.2.3   |                                                                                | (10 Marks) |
|      |         |                                                                                |            |
| 6.3  |         | y explain how the impurities are incorporated with the naceutical preparations | (50 Marks) |